Ringed spaces (see Har II.2, Shaf V.3.1)

To each ring R, we now have associated a topological space SpecR and a sheaf of rings O. We want to show that this is functorial, so we first need a category in which (SpecR, O) is an object.

Def: A <u>ringed space</u> is a pair (X, O_X) consisting of a topological space X and a sheaf of rings O_X on X.

Ex: (Spec R, O) is a ringed space

EX: A topological space X together w/ the sheaf of continuous R-valued functions is a ringed space. (i.e. not all ringed spaces look like spec R).

Def: A <u>morphism of ringed spaces</u> from (X, O_x) to (Y, O_y) is a pair $(f, f^{\#})$ of a continuous map $f: X \longrightarrow Y$ and a map $f^{\#}: O_y \longrightarrow f_* O_x$ of sheaves of rings. (i.e. over each open $U \subseteq Y$ a ring homomorphism $O_Y(u) \longrightarrow O_x(f^{-1}(u))$ that commutes with restriction maps.) An important property of (SpecR, O) is the fact that every stalk Op is a local ring, which is reflected in the following:

Def: A ringed space (X, \mathcal{O}_x) is a <u>locally ringed space</u> if for each PEX, The stalk $\mathcal{O}_{X,P}$ is a local ring.

We want morphisms of loc. ringed spaces to respect the local ring structure on the stalks. That is:

Def: If A and B are local rings
$$w/max'l$$
 ideals m_A
and m_B respectively, then a homomorphism
 $\Psi: A \longrightarrow B$ is a local homomorphism if
 $\Psi^{-i}(m_B) = m_A$, or equivalently $\Psi(m_A) \subseteq m_B$.

We know that a morphism $(f, f^{\#})$ of ringed spaces induces maps between the stalks of \mathcal{O}_{Y} and $f_{*}\mathcal{O}_{X}$, but we want maps $\mathcal{O}_{Y, f(P)} \longrightarrow \mathcal{O}_{X, P}$.

This is well-defined since the f'(u) s.t. $U \ni f(P)$ are a subset of all the open sets containing P. So if $(s, f'(u)) \sim (s', f'(u'))$ in the first direct limit then the will also be equivalent in the second.

Def: If X and Y are locally ringed spaces, then a
morphism
$$(f, f^{\#}): (X, \mathfrak{S}_X) \rightarrow (Y, \mathfrak{S}_Y)$$
 of ringed
spaces is a morphism of locally ringed spaces if
for each PEX, $f_p^{\#}: \mathfrak{S}_{Y, f(p)} \rightarrow \mathfrak{S}_{X, P}$ is a local
homomorphism. (It's an isomorphism if f and $f^{\#}$ are.)

Theorem: If $\mathcal{Y}: \mathbb{R} \to S$ is a morphism of rings, Then \mathcal{Y} induces a natural morphism of locally ringed spaces $(f, f^{\#}): (X, \mathcal{O}_{X}) \to (Y, \mathcal{O}_{Y}),$ where $X = \operatorname{Spec} S, Y = \operatorname{Spec} \mathbb{R}.$

Pf:
$$f: X \to Y$$
 is the map we've already defined:
 $f(P) = Y^{-1}(P)$.

We first define ft on distinguished open sets by

$$f^{\#}: O_{Y} (D(a)) \longrightarrow f_{X} O_{X} (D(a))$$

$$R_{a} \qquad O_{X} (f^{-1} (D(a)))$$

$$O_{X} (D(4(a)))$$

$$S_{4(a)}$$
Where $\frac{r}{a} \longmapsto \frac{q(r)}{q(a)}$
(Note that if $q(a) = 0$, then $S_{q(a)} = 0$ and this is the

Zew map.)

This uniquely extends to a morphism on each open US YIf $P \in X = Spec Y$, then $f(P) = \Psi^{-1}(P) \in Spec X$, and the induced map on stalks is

 $R_{\varphi^{-1}(P)} \longrightarrow S_{P_{\mathcal{F}}}$

which is local by construction. D

Conversely, all morphisms Spec B -> Spec A arise uniquely in this way. That is:

Theorem: If R and S are rings then any morphism of locally ringed spaces $f: \text{Spec } S \rightarrow \text{Spec } R$ is induced (uniquely) by a homomorphism $\psi: R \rightarrow S$. Thus, there is a one-to-one correspondence between such morphisms.

Pf: There is only one possible candidate for 4 (hence uniqueness): The induced map on global sections. So set 4 to be

$$f^{\pm}: \Gamma(SpecR, \mathcal{O}_{SpecR}) \longrightarrow \Gamma(SpecS, \mathcal{O}_{SpecS})$$

 $\stackrel{''}{R}$
 $\stackrel{''}{S}$

Thus, we just need to check that (+, f) is the map induced by e.

we know that 4 is compatible with the map on stalks, so

$$\begin{array}{c} R \xrightarrow{\varphi} S \\ \downarrow & \downarrow \\ R_{f(P)} \xrightarrow{f_{P}^{*}} S_{P} \end{array}$$

commutes. But $f_p^{\#}$ is local, which means that $(f_p^{\#})^{-1}(P) = f(P)$. Commutativity of the diagram implies that $(f_p^{-1}(P) = f(P))$.

so the map of is the one induced by 4.

Now maps f#: Ra -> Sy(a) over D(a)

are also compatible w/ 4, so they must be those induced by 4, so f# is induced by 4, and we're done. D

Remark: In general, if $\Psi: \mathcal{F} \to \mathcal{B}$ is a morphism of sheaves, and we know $\Psi(u)$ for each element U of a basis, then we can recover Ψ . (Use sheaf condition.)